(本小题满分13分)已知抛物线上一动点,抛物线内一点,为焦点且的最小值为。求抛物线方程以及使得|PA|+|PF|最小时的P点坐标;过(1)中的P点作两条互相垂直的直线与抛物线分别交于C、D两点,直线CD是否过一定点? 若是,求出该定点坐标; 若不是,请说明理由。
已知函数. (1)当时,解不等式; (2)若不等式恒成立,求实数的取值范围.
已知圆的极坐标方程为,直线的参数方程为 (为参数),点的极坐标为,设直线与圆交于点、. (1)写出圆的直角坐标方程; (2)求的值.
已知,为圆的直径,为垂直的一条弦,垂足为,弦交于. (1)求证:、、、四点共圆; (2)若,求线段的长.
已知函数. (1)当时,求在处的切线方程; (2)设函数, (ⅰ)若函数有且仅有一个零点时,求的值; (ⅱ)在(ⅰ)的条件下,若,,求的取值范围.
已知、为椭圆的左右焦点,点为其上一点,且有. (1)求椭圆的标准方程; (2)过的直线与椭圆交于、两点,过与平行的直线与椭圆交于、两点,求四边形的面积的最大值.