(本小题满分14分)已知圆: 及点,为圆上一动点,在同一坐标平面内的动点M满足:. (Ⅰ)求动点的轨迹 的方程; (Ⅱ)设过定点的直线与椭圆交于不同的两点,且为锐角(其中为坐标原点),求直线的斜率的取值范围. (Ⅲ)设是它的两个顶点,直线与相交于点,与椭圆相交于两点.求四边形面积的最大值
如图,菱形的边长为,,.将菱形 沿对角线折起,得到三棱锥,点是棱的中点,.(1)求证:面;(2)求点M到平面ABD的距离.
已知各项均为正数的数列的前项和为,且,,成等差数列,(1)求数列的通项公式;(2)若,设,求数列的前项和
在中,角、、所对的边分别为、、,已知,,.(1)求及的面积; (2)求.
已知四棱锥P-ABCD,底面ABCD是的菱形,又,且PD=CD,点M、N分别是棱AD、PC的中点. (Ⅰ)证明:DN//平面PMB;(Ⅱ)证明:平面PMB平面PAD;
解关于的不等式