(本小题满分13分)已知函数.(Ⅰ)当时,证明:当时,;(Ⅱ)当时,证明:.
已知定义域为R的函数是奇函数.(1)求a的值;(2)判断的单调性(不需要写出理由);(3)若对任意的,不等式恒成立,求的取值范围.
设函数(1)若且对任意实数均有成立,求表达式;(2)在(1)的条件下,当时,是单调函数,求实数的取值范围。
已知函数在处取得极值.(Ⅰ) 求;(Ⅱ) 设函数,如果在开区间上存在极小值,求实数的取值范围.
已知函数,.(1)求的值;(2)设,,,求的值
已知奇函数的定义域为,且在上是增函数, 是否存在实数使得, 对一切都成立?若存在,求出实数的取值范围;若不存在,请说明理由.