(本小题满分12分) 某校从6名学生会干部(其中男生4人,女生2人)中选3人参加市中学生运动会志愿者。(Ⅰ)所选3人中女生人数为ξ,求ξ的分布列及数学期望。(Ⅱ)在男生甲被选中的情况下,求女生乙也被选中的概率
(本小题满分10分)选修4-5:不等式选讲 对于任意的实数和,不等式恒成立,记实数的最大值是. (1)求的值;(2)解不等式.
(本小题满分10分)【选修4—1:几何证明选讲】 在直角坐标系中,以原点为极点,轴的正半轴为极轴建坐标系,已知曲线,已知过点的直线的参数方程为(为参数),直线与曲线分别交于两点。 (1)写出曲线和直线的普通方程; (2)若成等比数列,求的值.
(本小题满分10分)【选修4—1:几何证明选讲】 如图,在正中,点分别在边上,且,,相交于点 (1)求证:四点共圆; (2)若正的边长为2,求,所在圆的半径.
(本小题满分12分)已知函数(为无理数,) (1)求函数在点处的切线方程; (2)设实数,求函数在上的最小值; (3)若为正整数,且对任意恒成立,求的最大值.
(本小题满分12分)如图,在三棱柱ABC-A1B1C1中,H是正方形AA1B1B的中心,AA1=2,C1H⊥平面AA1B1B,且C1H=. (1)求异面直线AC与A1B1所成角的余弦值; (2)求二面角A-A1C1-B1的正弦值; (3)设N为棱B1C1的中点,点M在平面AA1B1B内,且MN⊥平面A1B1C1,求线段BM的长.