(本小题满分10分)选修4-5:不等式选讲对于任意的实数和,不等式恒成立,记实数的最大值是.(1)求的值; (2)解不等式.
若实数、、满足,则称比接近. (1)若比3接近0,求的取值范围; (2)已知函数的定义域.任取,等于和中接近0的那个值.写出函数的解析式,并指出它的奇偶性、最小正周期、最小值和单调性(结论不要求证明).
已知复数, , , 求:(1)求的值;(2)若,且,求的值.
(本小题14分)已知函数 (Ⅰ)若时,函数在其定义域上是增函数,求b的取值范围; (Ⅱ)在(Ⅰ)的结论下,设函数的最小值; (Ⅲ)设函数的图象C1与函数的图象C2交于P、Q,过线段PQ的中点R作x轴的垂线分别交C1、C2于点M、N,问是否存在点R,使C1在M处的切线与C2在N处的切线平行?若存在,求出R的横坐标;若不存在,请说明理由.
(本小题14分)设是定义在上的奇函数,函数与的图象关于轴对称,且当时,. (1)求函数的解析式; (2)若对于区间上任意的,都有成立,求实数的取值范围.
在某次水下考古活动中,需要潜水员潜入水深为30米的水底进行作业.其用氧量包含3个方面:①下潜时,平均速度为(米/单位时间),单位时间内用氧量为(为正常数);②在水底作业需5个单位时间,每个单位时间用氧量为0.4;③返回水面时,平均速度为(米/单位时间), 单位时间用氧量为0.2.记该潜水员在此次考古活动中,总用氧量为. (1)将表示为的函数; (2)设0<≤5,试确定下潜速度,使总的用氧量最少.