(本小题12分)已知函数 (I)求函数的单调区间,并比较的大小; (II)证明的大小。
(本小题满分13分)已知抛物线的焦点为,是抛物线上横坐标为4、且位于轴上方的点,到抛物线的准线的距离为5,过作垂直于轴,垂足为,的中点为.(1)求抛物线的方程;(2)过作,垂足为,求点的坐标.
(本小题12分)为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:
(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提供更好的调查方法来估计该地区老年人,需要志愿帮助的老人的比例?说明理由. 附:
菱形中,,且,现将三角形沿着折起形成四面体,如图所示.(1)当为多大时,面?并证明;(2)在(1)的条件下,求点到面的距离.
为了解某校高三学生的视力情况,随机抽查了该校名高三学生,得到如图所示的频率分布直方图.(1)求图中的值;(2)若从视力在的学生中随机选取人,求这2人视力均在的概率
已知曲线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,曲线的参数方程是:(是参数).(1)将曲线和曲线的方程转化为普通方程;(2)若曲线与曲线相交于两点,求证;(3)设直线交于两点,且(且为常数),过弦的中点作平行于轴的直线交曲线于点,求证:的面积是定值.