已知函数.(1)若曲线在点处的切线与直线垂直,求函数的单调区间;(2)若对于都有成立,试求的取值范围;(3)记.当时,函数在区间上有两个零点,求实数的取值范围.
调查某市出租车使用年限和该年支出维修费用(万元),得到数据如下:
(1)求线性回归方程; (2)由(1)中结论预测第10年所支出的维修费用.()
如图是求的算法的程序框图. (1)标号①处填. 标号②处填. (2)根据框图用直到型(UNTIL)语句编写程序.
函数的图象如下图所示. (1)求解析式中的值; (2)该图像可由的图像先向_____(填“左”或“右”)平移_______个单位, 再横向拉伸到原来的_______倍.纵向拉伸到原来的______倍得到.
已知, . (1)判断的奇偶性并加以证明; (2)判断的单调性并用定义加以证明; (3)当的定义域为时,解关于m的不等式.
探究函数的图像时,.列表如下:
观察表中y值随x值的变化情况,完成以下的问题: ⑴函数的递减区间是 ,递增区间是 ; ⑵若对任意的恒成立,试求实数m的取值范围.