如图:△ABC的三个内角∠A、∠B、∠C所对的边长分别为a、b、c,且满足关系:a2+b2=c2.请作一个三角形A′B′C′,使∠C′=90°,B′C′=a,A′C′=b.(1)△A′B′C′是否全等于△ABC?为什么?(2)∠C′是否等于∠C?(3)由以上你能判定△ABC是直角三角形吗?请你想一想,三角形三条边长满足什么关系,这个三角形一定是直角三角形?
如图甲,在平面直角坐标系中,直线分别交x轴、y轴点A、B,⊙O的半径为个单位长度.点P为直线上的动点,过点P作⊙O的切线PC、PD ,切点分别为C、D,且PC⊥PD. (1)写出点A、B的坐标:A (),B (); (2)试说明四边形OCPD的形状(要有证明过程); (3)求点P的坐标; (4)如图乙 ,若直线将⊙O的圆周分成两段弧长之比为1∶3,请直接写出b的值:b=.
如图,O1O2=7cm,⊙O1和⊙O2的半径分别为2cm和3cm,O1O2交⊙O2于点P. (1)若把⊙O1沿直线O1O2以每秒1cm的速度从左向右平移,经过几秒后⊙O1与⊙O2相切? (2)若将⊙O1以每秒30°的速度绕点P顺时针方向旋转一周,则经过几秒后⊙O1与⊙O2相切?
如图所示,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从C点出发沿CB边向点B以2cm/s的速度移动. (1)如果P、Q同时出发,几秒钟后,可使△PCQ的面积为8cm? (2)若点P从点A出发沿边AC-CB向点B以1cm/s的速度移动,点Q从C点出发沿CB-BA边向点A以2cm/s的速度移动。当点P在CB边上,点Q在BA边上,是否存在某一时刻,使得△PBQ的面积14.4 cm?
如图,每个小方格都是边长为1个单位的小正方形,B,C,D三点都是格点(每个小方格的顶点叫格点). (1)找出格点A,连接AB、AD,使得四边形ABCD为菱形; (2)画出菱形ABCD绕点A逆时针旋转90°后的菱形AB1C1D1,并求点C旋转到点C1所经过的路线长.(结果保留)
如图,点在的直径的延长线上,点在上,,, (1)求证:CD是的切线; (2)若的半径为3,求CD的长.