(本小题12分)设△ABC的内角A,B,C所对的边长分别为a,b,c,且.(Ⅰ)求角的大小; (Ⅱ)若角,边上的中线的长为,求的面积.
如图,在四棱锥P‐ABCD中,四边形ABCD为正方形,PA⊥平面ABCD,E为PD的中点.求证:(1)PB∥平面AEC;(2)平面PCD⊥平面PAD.
(本小题满分14分)已知直线和.问为何值时,有:(1)?(2)?
已知半径为5的圆的圆心在轴上,圆心的横坐标是整数,且与直线相切. (1)求圆的标准方程;(2)设直线与圆相交于两点,求实数的取值范围;(3)在(2)的条件下,是否存在实数,使得弦的垂直平分线过点.
(本小题16分)四棱锥中,底面是边长为8的菱形,,若,平面⊥平面.(1)求四棱锥的体积;(2)求证:⊥.
已知圆心(Ⅰ)写出圆C的标准方程;(Ⅱ)过点作圆C的切线,求切线的方程及切线的长.