已知函数.(1)讨论函数在定义域内的极值点的个数;(2)若函数在处取得极值,对,恒成立,求实数的取值范围;(3)当且时,试比较的大小.
已知直线,,,……,(其中),当时,直线与间的距离为n.(1)求;(2)求直线与直线及x轴、y轴围成图形的面积.
的周长为,且.(1)求边的长;(2)若的面积为,求角的度数.
设椭圆的左、右焦点分别为F1与F2,直线过椭圆的一个焦点F2且与椭圆交于P、Q两点,若的周长为。(1)求椭圆C的方程;(2)设椭圆C经过伸缩变换变成曲线,直线与曲线相切且与椭圆C交于不同的两点A、B,若,求面积的取值范围。(O为坐标原点)
(本小题满分13分) 设数列满足;(1)当时,求并由此猜测的一个通项公式;(2)当时,证明对所有的,(i)(ii)。
从边长为2a的正方形铁皮的四个角各截去一个边长为x的小正方形,再将四边向上折起,做成一个无盖的长方体铁盒,且要求长方体的高度x与底面正方形的边长的比不超过常数t.问:(1)求长方体的容积V关于x的函数表达式;(2)x取何值时,长方体的容积V有最大值?