已知椭圆C:=1(a>b>0)的离心率为,以原点为圆点,椭圆的短半轴为半径的圆与直线x-y+=0相切。(Ⅰ)求椭圆的标准方程;(Ⅱ)设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连接PB交随圆C于另一点E,证明直线AE与x轴相交于定点Q.
已知二次函数y=f1(x)的图象以原点为顶点且过点(1,1),反比例函数y=f2(x)的图象与直线y=x的两个交点间距离为8,f(x)= f1(x)+ f2(x). (Ⅰ) 求函数f(x)的表达式; (Ⅱ) 证明:当a>3时,关于x的方程f(x)= f(a)有三个实数解.
设是奇函数,是偶函数,并且,求和表达式。
求函数的定义域.
设 (1)求的表达式,并判断的奇偶性; (2)试证明:函数的图象上任意两点的连线的斜率大于0; (3)对于,当时,恒有求m的取值范围。
利民商店经销某种洗衣粉,年销售量为6000包,每包进价2.80元,销售价3.40元,全年分若干次进货,每次进货x包,已知每次进货运输劳务费62.50元,全年保管费为1.5x元。 (1)把该商店经销洗衣粉一年的利润y(元)表示为每次进货量x(包)的函数,并指出函数的定义域; (2)为了使利润最大,每次应该进货多少包?