已知椭圆C:=1(a>b>0)的离心率为,以原点为圆点,椭圆的短半轴为半径的圆与直线x-y+=0相切。(Ⅰ)求椭圆的标准方程;(Ⅱ)设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连接PB交随圆C于另一点E,证明直线AE与x轴相交于定点Q.
(本小题满分12分)自点发出的光线射到轴上,被轴反射,其反射光线所在直线与圆相切,求光线所在直线的方程。
(本小题满分10分)解关于x的不等式ax2-(a+1)x+1<0。
(本小题满分12分)已知函数其中(1)、若的单调增区间是(0.1),求m的值(2)、当时,函数的图像上任意一点的切线斜率恒大于3m,求m的取值范围.
(本小题满分12分)若a、b、c是△ABC三个内角A、B、C所对边,且(1)求(2)当时,求的值
(本小题满分12分)在四棱柱中,底面是直角梯形,AB∥CD,∠ABC=,AB=PB=PC=BC=2CD=2,平面PBC⊥平面ABCD(1)求证:AB⊥平面PBC(2)求三棱锥C-ADP的体积(3)在棱PB上是否存在点M使CM∥平面PAD?若存在,求的值。若不存在,请说明理由。