某车间有20名工人,每人每天可加工甲种零件5件或乙种零件4件。在这20名工人中,派x人加工乙种零件,其余的加工甲种零件,已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元,若要使车间每天获利不低于1800元,写出x所要满足的不等关系.
(本小题满分12分)如图,在四棱锥中,底面是矩形,平面,,,是线段上的点,是线段上的点,且(Ⅰ)当时,证明平面;(Ⅱ)是否存在实数,使异面直线与所成的角为?若存在,试求出的值;若不存在,请说明理由.
(本小题满分12分)已知数列,满足:,当时,;对于任意的正整数,.设数列的前项和为.(Ⅰ)计算、,并求数列的通项公式;(Ⅱ)求满足的正整数的集合.
(本小题满分12分)在平面内,不等式确定的平面区域为,不等式组确定的平面区域为.(Ⅰ)定义横、纵坐标为整数的点为“整点”. 在区域任取3个整点,求这些整点中恰有2个整点在区域的概率;(Ⅱ)在区域每次任取个点,连续取次,得到个点,记这个点在区域的个数为,求的分布列和数学期望.
.(本小题满分12分)已知函数.(Ⅰ)求函数的最大值,并写出取最大值时的取值集合;(Ⅱ)已知中,角的对边分别为若求实数的最小值.
(本小题满分10分)选修4—5:不等式选讲设函数= + 1.(Ⅰ)画出函数y=的图像:(Ⅱ)若不等式≤ax的解集非空,求n的取值范围