已知函数,(1)求该函数的最小正周期和最小值;(2)若,求该函数的单调递增区间。
甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:
一级品
二级品
合计
甲机床
150
50
200
乙机床
120
80
270
130
400
(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?
(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?
附: K 2 = n ( ad - bc ) 2 ( a + b ) ( c + d ) ( a + c ) ( b + d )
P K 2 ≥ k
0.050
0.010
0.001
k
3.841
6.635
10.828
已知函数 f ( x ) = x - 2 , g ( x ) = 2 x + 3 - 2 x - 1 .
(1)画出和 y = g x 的图像;
(2)若 f x + a ≥ g x ,求a的取值范围.
在直角坐标系 xOy 中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为 ρ = 2 2 cos θ .
(1)将C的极坐标方程化为直角坐标方程;
(2)设点A的直角坐标为 1 , 0 ,M为C上的动点,点P满足 AP ⃗ = 2 AM ⃗ ,写出Р的轨迹 C 1 的参数方程,并判断C与 C 1 是否有公共点.
已知 a > 0 且 a ≠ 1 ,函数 f ( x ) = x a a x ( x > 0 ) .
(1)当 a = 2 时,求 f x 的单调区间;
(2)若曲线 与直线 y = 1 有且仅有两个交点,求 a的取值范围.
抛物线C的顶点为坐标原点O.焦点在x轴上,直线l: x = 1 交C于P,Q两点,且 OP ⊥ OQ .已知点 M 2 , 0 ,且 ⊙ M 与l相切.
(1)求C, ⊙ M 的方程;
(2)设 A 1 , A 2 , A 3 是C上的三个点,直线 A 1 A 2 , A 1 A 3 均与 ⊙ M 相切.判断直线 A 2 A 3 与 ⊙ M 的位置关系,并说明理由.