若一个数列各项取倒数后按原来的顺序构成等差数列,则称这个数列为调和数列.已知数列是调和数列,对于各项都是正数的数列,满足.(Ⅰ)证明数列是等比数列;(Ⅱ)把数列中所有项按如图所示的规律排成一个三角形数表,当时,求第行各数的和;(Ⅲ)对于(Ⅱ)中的数列,证明:.
如图,、是圆的半径,且,是半径上一点:延长交圆于点,过作圆的切线交的延长线于点.求证:.
已知函数. (Ⅰ)当时,求函数的单调区间; (Ⅱ)当时,不等式恒成立,求实数的取值范围. (Ⅲ)求证:(,e是自然对数的底数).
已知抛物线的顶点为原点,其焦点到直线的距离为.设为直线上的点,过点作抛物线的两条切线,其中为切点. (Ⅰ)求抛物线的方程; (Ⅱ)当点为直线上的定点时,求直线的方程; (Ⅲ)当点在直线上移动时,求的最小值.
小波以游戏方式决定:是去打球、唱歌还是去下棋.游戏规则为:以O为起点,再从A1,A2,A3,A4,A5,A6(如图)这6个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X,若就去打球;若就去唱歌;若就去下棋. (Ⅰ)分别求小波去下棋的概率和不去唱歌的概率. (Ⅱ)写出数量积X的所有可能取值,并求X分布列与数学期望
如图,在长方体,中,,点在棱AB上移动. (Ⅰ)证明:; (Ⅱ)求点到平面的距离; (Ⅲ)等于何值时,二面角的大小为