因式分解:8x3y3-2xy.
据报道,全国硕士研究生2011年入学考试报考人数再一次达到历史高峰,以下是根据2008年——2011年全国硕士研究生报考人数绘制的统计图.(1)请你根据统计图计算出2009年——2011年这三年全国硕士研究生入学考试报考人数比上年增加值的平均数为 万人(结果保留整数);(2)为了调查各专业报考人数,某网站进行了网上调查,并将调查结果绘制成扇形统计图,请你补全扇形统计图并计算图中表示金融专业的扇形的圆心角为 度;若2012年全国硕士研究生报考人数按照(1)中的平均数增长,各专业报考人数所占比例与2011年相比基本保持不变,请你预测2012年全国硕士研究生入学考试报考金融专业的考生约有 万人(结果保留整数).
如图,在△ABC中,∠ B=90°,AB=6cm,BC=8cm,点P从点A出发沿AB边向点B以1cm/秒的速度移动,点Q从点B出发沿BC边向点C以2cm/秒的速度移动.(1)如果P、Q分别从A、B同时出发,经过多长时间,使△PBQ的面积为8cm2?(2)如果P、Q分别从A、B同时出发, 当P、Q两点运动几秒时,有最小值,并求这个最小值.
国家推行“节能减排,低碳经济”政策后,某环保节能设备生产企业的产品供不应求.若该企业的某种环保设备每月的产量保持在一定的范围,每套产品的生产成本不高于50万元,每套产品的售价不低于90万元.已知这种设备的月产量x(套)与每套的售价y1(万元)之间满足关系式y1=170-2x,月产量x(套)与生产总成本y2(万元)存在如图所示的函数关系.(1)直接写出y2与x之间的函数关系式;(2)求月产量x的范围;(3)当月产量x(套)为多少时,这种设备的利润W(万元)最大?最大利润是多少?
如图所示,是直角三角形,,以为直径的⊙O交于点,点是边的中点,连结.(1)求证:与⊙O相切;(2)若⊙O的半径为,,求.
如图,在测量塔高AB时,选择与塔底在同一水平面的同一直线上的C、D两点,用测角仪器测得塔顶A的仰角分别是30°和60°.已知测角仪器高CE=1.5米,CD=30米,求塔高AB.(保留根号)