设A、B、C是三角形的三内角,且lgsinA=0,又sinB、sinC是关于x的方程4x2-2(+1)x+k=0的两个根,求实数k的值.
为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为.(1)请将上面的列联表补充完整;(2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由.下面的临界值表供参考:(参考公式:,其中)
(本小题满分13分)已知函数在处取得极值.(Ⅰ)求实数的值; (Ⅱ)若关于的方程在区间上恰有两个不同的实数根,求实数的取值范围;(Ⅲ)证明:对任意的正整数,不等式都成立.
(本小题满分13分) 已知椭圆E中心在原点,一个焦点为 ,离心率(Ⅰ)求椭圆E的方程;(Ⅱ)是长为的椭圆E动弦,为坐标原点,求面积的最大值与最小值
(本小题满分13分) 某生产流水线由于改进了设备,预计改进后第一年年产量的增长率为,以后每年的增长率是前一年的一半,设原来的产量是(Ⅰ) 写出改进设备后的第一年、第二年、第三年的产量,并写出第年与第年的产量之间的关系式;(Ⅱ) 由于设备不断老化,估计每年将损失年产量的,如此下去,以后每年的产量是否始终是逐年提高?若是,请给予证明;若不是,请说明从第几年起,产量将比上一年减少?
(本小题满分12分)已知分别在射线(不含端点)上运动,,在中,角、、所对的边分别是、、.(Ⅰ)若、、依次成等差数列,且公差为2.求的值;(Ⅱ)若,,试用表示的周长,并求周长的最大值.