(本小题满分12分)已知分别在射线(不含端点)上运动,,在中,角、、所对的边分别是、、.(Ⅰ)若、、依次成等差数列,且公差为2.求的值;(Ⅱ)若,,试用表示的周长,并求周长的最大值.
已知函数. (1)求的单调区间; (2)当时,判断和的大小,并说明理由; (3)求证:当时,关于的方程:在区间上总有两个不同的解.
已知椭圆的中心在原点,焦点在轴上.若椭圆上的点到焦点、的距离之和等于4. (1)写出椭圆的方程和焦点坐标. (2)过点的直线与椭圆交于两点、,当的面积取得最大值时,求直线的方程.
如图,矩形中,,,平面,,,为的中点. (1)求证:平面. (2)若,求平面与平面所成锐二面角的余弦值.
甲、乙、丙三人独立破译同一份密码,已知甲、乙、丙各自破译出密码的概率分别为、、,且他们是否破译出密码互不影响,若三人中只有甲破译出密码的概率为. (1)求的值. (2)设甲、乙、丙三人中破译出密码的人数为,求的分布列和数学期望.
已知函数, (Ⅰ)已知常数,解关于的不等式; (Ⅱ)若函数的图象恒在函数图象的上方,求实数的取值范围.