(本小题满分13分) 已知椭圆E中心在原点,一个焦点为 ,离心率(Ⅰ)求椭圆E的方程;(Ⅱ)是长为的椭圆E动弦,为坐标原点,求面积的最大值与最小值
已知集合若,则实数m的取值范围是()
记关于x的不等式的解集为P,不等式的解集为Q. (1)若a=3,求P (2)若求正数a的取值范围
已知集合且,求a的值。
如图,已知曲线,曲线,P是平面上一点,若存在过点P的直线与都有公共点,则称P为“C1—C2型点”. (1)在正确证明的左焦点是“C1—C2型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证); (2)设直线与有公共点,求证,进而证明原点不是“C1—C2型点”; (3)求证:圆内的点都不是“C1—C2型点”.
设抛物线C:的焦点为F,经过点F的直线与抛物线交于A、B两点. (1)若,求线段中点M的轨迹方程; (2)若直线AB的方向向量为,当焦点为时,求的面积; (3)若M是抛物线C准线上的点,求证:直线的斜率成等差数列.