(本小题满分13分) 某生产流水线由于改进了设备,预计改进后第一年年产量的增长率为,以后每年的增长率是前一年的一半,设原来的产量是(Ⅰ) 写出改进设备后的第一年、第二年、第三年的产量,并写出第年与第年的产量之间的关系式;(Ⅱ) 由于设备不断老化,估计每年将损失年产量的,如此下去,以后每年的产量是否始终是逐年提高?若是,请给予证明;若不是,请说明从第几年起,产量将比上一年减少?
已知直线,. (Ⅰ)若,求实数的值; (Ⅱ)当时,求直线与之间的距离.
如图,正方体的棱长为,线段上有两个动点,且,则下列结论中错误的是()
已知函数,. (1)若,求函数的单调区间; (2)若恒成立,求实数的取值范围; (3)设,若对任意的两个实数满足,总存在,使得成立,证明:.
已知椭圆C:的离心率为,左、右焦点分别为,点G在椭圆C上,且,的面积为3. (1)求椭圆C的方程: (2)设椭圆的左、右顶点为A,B,过的直线与椭圆交于不同的两点M,N(不同于点A,B),探索直线AM,BN的交点能否在一条垂直于轴的定直线上,若能,求出这条定直线的方程;若不能,请说明理由。
已知数列满足:,且。 (1)求通项公式; (2)求数列的前n项的和