(本题16分)在平面直角坐标系中,是抛物线的焦点,是抛物线上位于第一象限内的任意一点,过三点的圆的圆心为,点到抛物线的准线的距离为.(Ⅰ)求抛物线的方程;(Ⅱ)是否存在点,使得直线与抛物线相切于点?若存在,求出点的坐标;若不存在,说明理由;(Ⅲ)若点的横坐标为,直线与抛物线有两个不同的交点,与圆有两个不同的交点,求当时,的最小值.
(本小题共14分)已知函数(其中常数). (1)求函数的定义域及单调区间; (2)若存在实数,使得不等式成立,求的取值范围.
(本小题共13分)已知△ABC的三个内角A,B,C的对边分别为a,b,c,且△ABC的面积为, (1)若,求角A,B,C的大小; (2)若a=2,且,求边c的取值范围.
(本小题共13分)已知函数, (1)求实数的值; (2)求函数的最小正周期及单调增区间.
(本小题共13分)已知在等比数列中,,且是和的等差中项. (1)求数列的通项公式; (2)若数列满足,求的前项和.
已知指数函数满足:,定义域为的函数是奇函数。 (1)求,的值; (2)判断函数的单调性并用定义加以证明; (3)若对任意的,不等式恒成立,求实数的取值范围。