(本小题满分12分).如图,在直角梯形中,,,且,现以为一边向形外作正方形,然后沿边将正方形翻折,使平面与平面垂直,为的中点(I) 求证: ∥平面;(Ⅱ)求证: 平面;(III) 求二面角的大小.
(理科)在平面直角坐标系中,已知点,,为动点,且直线与直线的斜率之积为. (Ⅰ)求动点的轨迹的方程; (Ⅱ)设过点的直线与曲线相交于不同的两点,.若点在轴上,且,求点的纵坐标的取值范围.
(文科)已知椭圆的一个焦点为,且离心率为.(Ⅰ)求椭圆方程;(Ⅱ)过点且斜率为的直线与椭圆交于两点,点关于轴的对称点为,求△面积的最大值.
(理科)已知椭圆的右焦点为,短轴的端点分别为,且. (Ⅰ)求椭圆的方程; (Ⅱ)过点且斜率为的直线交椭圆于两点,弦的垂直平分线与轴相交 于点.设弦的中点为,试求的取值范围.
(本小题满分14分)已知函数,(为常数,是自然对数的底数),为的导函数,且, (1)求的值; (2)对任意证明:; (3)若对所有的≥0,都有≥ax成立,求实数a的取值范围.
(本小题满分13分)已知定点,,定直线:,动点与点的距离是它到直线的距离的.设点的轨迹为,过点的直线交于、两点,直线、与直线分别相交于、两点。 (1)求的方程; (2)试判断以线段为直径的圆是否过点,并说明理由.