(文科)已知椭圆的一个焦点为,且离心率为. (Ⅰ)求椭圆方程; (Ⅱ)过点且斜率为的直线与椭圆交于两点,点关于轴的对称点为,求△面积的最大值.
已知直线所经过的定点恰好是椭圆的一个焦点,且椭圆上的点到点的最大距离为8. (1)求椭圆的标准方程; (2)已知圆,直线.试证明当点在椭圆上运动时,直线与圆恒相交;并求直线被圆所截得的弦长的取值范围.
椭圆:的两个焦点为、,点在椭圆上,且,,. (Ⅰ)求椭圆的方程; (Ⅱ)若直线过圆的圆心,交椭圆于、两点,且、关于点对称,求直线的方程.
设函数,若对所有的,都有成立,求实数的取值范围.
如图,在四棱锥中,底面为矩形,侧棱底面,,,,为的中点. (Ⅰ)求直线与所成角的余弦值; (Ⅱ)在侧面内找一点,使面,并求出点到和的距离.
已知直线l的参数方程为,曲线C的参数方程为. (Ⅰ)将曲线C的参数方程转化为普通方程; (Ⅱ)若直线l与曲线C相交于A、B两点,试求线段AB的长