如图,某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:(1)计算并完成表格:(2)请估计,当n很大时,频率将会接近多少?(3)假如你去转动转盘一次,你获得铅笔的概率是多少?
某商场将进价为2000元的冰箱以2400元出售,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台. (1)假设每台冰箱降价x元,商场每天销售这种冰箱的数量是y台,请写出y与x之间的函数关系式;(不要求写自变量的取值范围) (2)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是z元,请写出z与x之间的函数关系式;(不要求写自变量的取值范围) (3)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
如图,海上有一个小岛P,它的周围12海里有暗礁,渔船由西向东航行,在点A测得小岛P在北偏东60°方向上,航行12海里到达B点,这时测得小岛P在北偏东45°方向上.如果渔船不改变航线继续向东行驶,有没有触礁的危险,通过计算说明。
已知:抛物线的图象经过原点,且开口向上. 确定m的值; 求此抛物线的顶点坐标; 当x取什么值时,y随x的增大而增大? 当x取什么值时,y<0?
已知二次函数y= x2 +4x+3. (1)用配方法将y= x2 +4x+3化成y=a (x-h) 2 +k的形式; (2)在平面直角坐标系中,画出这个二次函数的图象; (3)写出当x为何值时,y>0.
如图,,,,. (1)求的长; (2)求的值.