某俱乐部举行迎圣诞活动,每位会员交50元活动费,可享受20元的消费,并参加一次游戏:掷两颗正方体骰子,点数之和为12点获一等奖,奖价值为a元的奖品;点数之和为11或10点获二等奖,奖价值为100元的奖品;点数之和为9或8点获三等奖,奖价值为30元的奖品;点数之和小于8点的不得奖。求:(1)同行的两位会员中一人获一等奖、一人获二等奖的概率;(2)如该俱乐部在游戏环节不亏也不赢利,求a的值。
求证:3n>(n+2)·2n-1(n∈N*,n>2).
求x(1-x)4+x2(1+2x)5+x3(1-3x)7展开式中各项系数的和.
在(3x-2y)20的展开式中,求: (1)二项式系数最大的项; (2)系数绝对值最大的项; (3)系数最大的项.
(1)已知n∈N*,求证:1+2+22+23+…+25n-1能被31整除; (2)求0.9986的近似值,使误差小于0.001.
有两排座位,前排11个座位,后排12个座位,现安排2人就座,规定前排中间的3个座位不能坐,并且这2人不左右相邻,共有多少种不同排法?