写出交换两个大小相同的杯子中的液体(A 水、 B 酒) 的两个算法。
在△ABC中,已知CM是∠ACB的平分线,△AMC的外接圆交BC于点N,且BN2AM.求证:ABAC.
已知是正数, ,,.(1)若成等差数列,比较与的大小;(2)若,则三个数中,哪个数最大,请说明理由;(3)若,,(),且,,的整数部分分别是求所有的值.
已知函数,.(1)若,则,满足什么条件时,曲线与在处总有相同的切线?(2)当时,求函数的单调减区间;(3)当时,若对任意的恒成立,求的取值的集合.
在平面直角坐标系xOy中,设椭圆C的中心在原点,焦点在x轴上,短半轴长为2,椭圆C上的点到右焦点的距离的最小值为.(1)求椭圆C的方程;(2)设直线l与椭圆C相交于A,B两点,且.①求证:原点O到直线AB的距离为定值;②求AB的最小值.
某创业投资公司拟投资开发某种新能源产品,估计能获得10万元到1000万元的投资收益.现准备制定一个对科研课题组的奖励方案:奖金(单位:万元)随投资收益(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%.(1)若建立函数模型制定奖励方案,试用数学语言表述该公司对奖励函数模型的基本要求,并分析函数是否符合这个要求,并说明原因;(2)若该公司采用函数作为奖励函数模型,试确定最小的正整数的值.