已知函数,.(1)若,则,满足什么条件时,曲线与在处总有相同的切线?(2)当时,求函数的单调减区间;(3)当时,若对任意的恒成立,求的取值的集合.
(本小题满分12分)已知 (1)求函数的最小正周期及在区间的最大值; (2)在中,所对的边分别是,, 求周长的最大值.
(本小题满分10分)等差数列中,,公差且成等比数列,前项的和为. (1)求及; (2)设,,求.
已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R. (1)求A∪B,(∁UA)∩B; (2)若A∩C≠∅,求a的取值范围.
证明:(1)对任一正整,都存在整数,使得成等差数列。 (2)存在无穷多个互不相似的三角形,其边长为正整数且成等差数列。
已知, 且. (Ⅰ)当时,求在处的切线方程;(Ⅱ)当时,设所对应的自变量取值区间的长度为(闭区间的长度定义为),试求的最大值; (Ⅲ)是否存在这样的,使得当时,?若存在,求出的取值范围;若不存在,请说明理由.