某创业投资公司拟投资开发某种新能源产品,估计能获得10万元到1000万元的投资收益.现准备制定一个对科研课题组的奖励方案:奖金(单位:万元)随投资收益(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%.(1)若建立函数模型制定奖励方案,试用数学语言表述该公司对奖励函数模型的基本要求,并分析函数是否符合这个要求,并说明原因;(2)若该公司采用函数作为奖励函数模型,试确定最小的正整数的值.
设为数列的前项和,对任意的,都有(为正常数). (1)求证:数列是等比数列; (2)数列满足,,求数列的通项公式; (3)在满足(2)的条件下,求数列的前项和.
已知椭圆的中心在原点,离心率,右焦点为. (1)求椭圆的方程; (2)设椭圆的上顶点为,在椭圆上是否存在点,使得向量与共线?若存在,求直线 的方程;若不存在,简要说明理由.
如图,直角梯形中,,,,,,过作,垂足为.、分别是、的中点.现将沿折起,使二面角的平面角为. (1)求证:平面平面; (2)求直线与面所成角的正弦值.
某市、、、四所中学报名参加某高校今年自主招生的学生人数如下表所示:
为了了解参加考试的学生的学习状况,该高校采用分层抽样的方法从报名参加考试的四所中学的学生当中随机抽取名参加问卷调查. (1)问、、、四所中学各抽取多少名学生? (2)从参加问卷调查的名学生中随机抽取两名学生,求这两名学生来自同一所中学的概率; (3)在参加问卷调查的名学生中,从来自、两所中学的学生当中随机抽取两名学生,用表示抽得中学的学生人数,求的分布列.
设,,.(1)求的最小正周期、最大值及取最大值时的集合; (2)若锐角满足,求的值.