某创业投资公司拟投资开发某种新能源产品,估计能获得10万元到1000万元的投资收益.现准备制定一个对科研课题组的奖励方案:奖金(单位:万元)随投资收益(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%.(1)若建立函数模型制定奖励方案,试用数学语言表述该公司对奖励函数模型的基本要求,并分析函数是否符合这个要求,并说明原因;(2)若该公司采用函数作为奖励函数模型,试确定最小的正整数的值.
(本小题满分12分)在平面直角坐标系中,有三个点的坐标分别是.(1)证明:A,B,C三点不共线;(2)求过A,B的中点且与直线平行的直线方程;(3)设过C且与AB所在的直线垂直的直线为,求与两坐标轴围成的三角形的面积.
设函数(1)若曲线在点处的切线方程是,求的值(2)求函数的单调区间及极值
已知椭圆C:的左焦点坐标为,且椭圆C的短轴长为4,斜率为1的直线与椭圆G交于A,B两点,以AB为底边的等腰三角形,顶点为.(1)求椭圆C的方程(2)求的面积
已知等比数列满足,,(1)求数列的通项公式(2)若等差数列的前n项和为,满足,,求数列的前n项和
设函数,若在处有极值(1)求实数的值(2)求函数的极值(3)若对任意的,都有,求实数的取值范围