(本小题满分12分)在平面直角坐标系中,有三个点的坐标分别是.(1)证明:A,B,C三点不共线;(2)求过A,B的中点且与直线平行的直线方程;(3)设过C且与AB所在的直线垂直的直线为,求与两坐标轴围成的三角形的面积.
(本小题满分12分) 如图,ABCD是正方形空地,正方形的边长为30m,电源在点P处,点P到边AD、AB的距离分别为9m、3m,某广告公司计划在此空地上竖一块长方形液晶广告屏幕MNEF,MN:NE=16:9,线段MN必须过点P,满足M、N分别在边AD、AB上,设,液晶广告屏幕MNEF的面积为 (I)求S关于x的函数关系式,并写出该函数的定义域; (II)当x取何值时,液晶广告屏幕MNEF的面积S最小?
(本小题满分12分) 设函数是定义域为R上的奇函数; (Ⅰ)若,试求不等式的解集; (Ⅱ)若上的最小值。
(本小题满分12分) 已知函数 (Ⅰ)若上是增函数,求实数的取值范围。 (Ⅱ)若的一个极值点,求上的最大值。
(本小题满分12分) 已知函数 (I)求的最小正周期和单调递减区间; (Ⅱ)若上恒成立,求实数的取值范围。
(本小题满分12分) 已知函数 (I)若在区间上是增函数,求实数a的取值范围; (II)若的一个极值点,求上的最大值; (III)在(II)的条件下,是否存在实数b,使得函数的图象恰有3个交点,若存在,请求出实数b的取值范围;若不存在,试说明理由。