过点,且在坐标轴上截距互为相反数的直线的方程.
在中,角A、B,C,所对的边分别为,且(Ⅰ)求的值;(Ⅱ)若,求的面积.
已知函数,(Ⅰ)求的值;(Ⅱ)求的最大值和最小值.
已知平面内一动点P到点F(1,0)的距离与点P到y轴的距离的差等于1.(Ⅰ)求动点P的轨迹C的方程;(Ⅱ)过点F作两条斜率存在且互相垂直的直线l1,l2,设l1与轨迹C相交于点A,B,l2与轨迹C相交于点D,E,求的最小值.
设a为实数,函数f(x)=ex-2x+2a,x∈R.(Ⅰ)求f(x)的单调区间与极值;(Ⅱ)求证:当a>ln2-1且x>0时,ex>x2-2ax+1.
如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=,AA1=3,D是BC的中点,点E在棱BB1上运动.(Ⅰ)证明:AD⊥C1E;(Ⅱ)当异面直线AC,C1E 所成的角为60°时,求三棱锥C1-A1B1E的体积.