如图,在Rt△ABC中,∠CAB=90°,AB=2,AC=。一曲线E过点C,动点P在曲线E上运动,且保持|PA|+|PB|的值不变,直线l经过A与曲线E交于M、N两点。(1)建立适当的坐标系,求曲线E的方程;(2)设直线l的斜率为k,若∠MBN为钝角,求k的取值范围。
设是锐角三角形,分别是内角A,B,C所对边长,并且(Ⅰ)求角A的值; (Ⅱ)若,求(其中).
数列中,且满足 ( )(Ⅰ)求数列的通项公式;(Ⅱ)设,求;
在中,角的对边分别为,。(Ⅰ)求的值;(Ⅱ)求的面积.
已知函数。(1)当时,求函数的单调区间;(2)求证:当时,对所有的都有成立.
已知函数,且当时,的最小值为2.(1)求的值,并求的单调增区间;(2)将函数的图象上各点的纵坐标保持不变,横坐标缩短到原来的,再把所得图象向右平移个单位,得到函数,求方程在区间上的所有根之和.