是椭圆上一点,、是椭圆的两个焦点,求的最大值与最小值
如图,在直三棱柱中,,为的中点.(I)求证:平面;(II)求平面和平面夹角的余弦值.
2011年国际象棋比赛中,胜一局得2分,负一局得0分,和棋一局得1分,在甲对乙的每局比赛中,甲胜、负、和的概率依次为0.5,0.3,0.2.现此二人进行两局比赛,得分累加.(I)求甲得2分的概率;(II)求乙至少得2分的概率.
已知函数(I)求函数的最小正周期;(II)求函数上的最大值与最小值.
已知等差数列的每一项都有求数列的前n项和
在数列和中,,,,其中且,.设,,试问在区间上是否存在实数使得.若存在,求出的一切可能的取值及相应的集合;若不存在,试说明理由.