(理科题)(本小题12分)已知数列{an}是等差数列,a2=3,a5=6,数列{bn}的前n项和是Tn,且Tn+bn=1.(1)求数列{an}的通项公式与前n项的和;(2)求数列{bn}的通项公式.
(本小题满分14分)(1)当时,求的极值点.(2)若,的图象与的图象有个不同的交点,求实数的范围.
(本小题满分13分)已知A(-2,0),B(2,0)为椭圆C的左、右顶点,F为其右焦点,P是椭圆C上异于A,B的动点,且APB面积的最大值为2.(1)求椭圆C的方程及离心率;(2)直线AP与椭圆在点B处的切线交于点D,当直线AP绕点A转动时,试判断以BD为直径的圆与直线PF的位置关系,并加以证明.
(本小题满分12分)已知各项均为正数的数列的前项和为,且.在数列中,,.(Ⅰ)求,; (Ⅱ)设求数列的前项和.
(本小题满分12分)为了了解山东省各旅游景点在大众中的熟知度,随机对15~65岁的人群抽样调查了人,回答问题“山东省有哪几个著名的旅游景点?”统计结果如下图表.
(1)分别求出的值; (2)从第组回答正确的人中用分层抽样的方法抽取6人,求第组每组各抽取多少人? (3)在(2)抽取的6人中随机抽取2人,求所抽取的人中恰好没有第3组人的概率.
(本小题满分12分)如图,在四棱锥中,平面,底面是菱形,,,为与的交点,为棱上一点.(Ⅰ)证明:平面⊥平面;(Ⅱ)若平面,求三棱锥的体积.