(本小题满分14分)已知二次函数满足以下两个条件:①不等式的解集是(-2,0) ②函数在上的最小值是3 (Ⅰ)求的解析式; (Ⅱ)若点在函数的图象上,且(ⅰ)求证:数列为等比数列(ⅱ)令,是否存在正实数,使不等式对于一切的恒成立?若存在,指出的取值范围;若不存在,请说明理由.
已知向量,函数,且的图像过点和点. (1)求的值; (2)将的图像向左平移个单位后得到函数的图像,若图像上各最高点到点的距离的最小值为1,求的解析式.
已知函数,. (1)求的最小正周期; (2)求在闭区间上的最大值和最小值.
已知=(1,2),=(-3,2),当k为何值时, (1)与垂直? (2)与平行?平行时它们是同向还是反向?
已知在直角坐标系中,直线的参数方程为(为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,曲线的极坐标方程为. ①求直线普通方程和曲线的直角坐标方程; ②设点是曲线上的一个动点,求它到直线的距离的取值范围.
已知矩阵有一个属于特征值的特征向量, ①求矩阵; ②已知矩阵,点,,,求在矩阵的对应变换作用下所得到的的面积.