对于下列问题:a、b是实数,若a>b,则a2>b2,如果结论保持不变,怎样改变条件,这个问题才是正确的?下面给出两种改法:(1)a、b是实数,若a>b>0,则a2>b2,(2)a、b是实数,若a<b<0,则a2>b2,试利用不等式的性质说明这两种改法是否正确?
如图,一次函数 y = k 1 x + b ( k 1 ≠ 0 ) 与反比例函数 y = k 2 x ( k 2 ≠ 0 ) 的图象交于点 A ( 2 , 3 ) , B ( n , - 1 ) .
(1)求反比例函数和一次函数的解析式;
(2)判断点 P ( - 2 , 1 ) 是否在一次函数 y = k 1 x + b 的图象上,并说明理由;
(3)写出不等式 k 1 x + b ⩾ k 2 x 的解集.
如图,楼顶上有一个广告牌 AB ,从与楼 BC 相距 15 m 的 D 处观测广告牌顶部 A 的仰角为 37 ° ,观测广告牌底部 B 的仰角为 30 ° ,求广告牌 AB 的高度.(结果保留小数点后一位,参考数据: sin 37 ° ≈ 0 . 60 , cos 37 ° ≈ 0 . 80 , tan 37 ° ≈ 0 . 75 , 2 ≈ 1 . 41 , 3 ≈ 1 . 73 )
某校为了增强学生的疫情防控意识,组织全校2000名学生进行了疫情防控知识竞赛.从中随机抽取了 n 名学生的竞赛成绩(满分100分),分成四组: A : 60 ⩽ x < 70 ; B : 70 ⩽ x < 80 ; C : 80 ⩽ x < 90 ; D : 90 ⩽ x ⩽ 100 ,并绘制出不完整的统计图:
(1)填空: n = ;
(2)补全频数分布直方图;
(3)抽取的这 n 名学生成绩的中位数落在 组;
(4)若规定学生成绩 x ⩾ 90 为优秀,估算全校成绩达到优秀的人数.
如图,在矩形 ABCD 中,点 E 在边 BC 上,点 F 在 BC 的延长线上,且 BE = CF .
求证:(1) ΔABE ≅ ΔDCF ;
(2)四边形 AEFD 是平行四边形.
先化简,再求值: ( x 2 - 4 x 2 + 4 x + 4 + x x + 2 ) ⋅ 1 x - 1 ,其中 x = 3 .