(本小题12分)若,函数(其中)(1)求函数的定义域;(2)求函数的值域
已知E、F、G、H分别是空间四边形ABCD的边AB、BC、CD、DA的中点. (1)用向量法证明E、F、G、H四点共面; (2)用向量法证明: BD∥平面EFGH; (3)设M是EG和FH的交点, 求证:对空间任一点O,有.
正三棱柱ABC—A1B1C1的底面边长为a,侧棱长为a. (1)建立适当的坐标系,并写出A、B、A1、C1的坐标; (2)求AC1与侧面ABB1A1所成的角.
如图,在△ABC中,设=,=,=,=λ,(0<λ<1),=μ(0<μ<1),试用向量,表示.
已知两点M(-1,0),N(1,0),且点P使成公差小于零的等差数列. (1)点P的轨迹是什么曲线? (2)若点P坐标为(x0,y0),Q为与的夹角,求tanθ
p:-2<m<0,0<n<1;q:关于x的方程x2+mx+n=0有2个小于1的正根,试分析p是q的什么条件。(充要条件)