如图所示,火车站、码头分别位于A,B两点,直线a和b分别表示铁路与河流.(1)从火车站到码头怎样走最近,画图并说明理由;(2)从码头到铁路怎样走最近,画图并说明理由;(3)从火车站到河流怎样走最近,画图并说明理由.
画出数轴,把下列各数:-5、、0、在数轴上表示出来,并用“<”号从小到大连接.
如图,学校准备新建一个长度为L的读书长廊,并准备用若干块带有花纹和没有花纹的两种规格大小相同的正方形地面砖搭配在一起,按图中所示的规律拼成图案铺满长廊,已知每个小正方形地面砖的边长均为0.5m. (1)按图示规律,第一图案的长度L1=m;第二个图案的长度L2= m; (2)用代数式表示带有花纹的地面砖块数n与走廊的长度Ln(m)之间的关系 ;
如图,抛物线y=ax2+bx+c经过A(﹣3.0)、C(0,4),点B在抛物线上,CB∥x轴,且AB平分∠CAO.(1)求抛物线的解析式;(2)线段AB上有一动点P,过点P作y轴的平行线,交抛物线于点Q,求线段PQ的最大值;(3)抛物线的对称轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由.
如图,△ABC是边长为4cm的等边三角形,AD为BC边上的高,点P沿BC向终点C运动,速度为1cm/s,点Q沿CA、AB向终点B运动,速度为2cm/s,若点P、Q两点同时出发,设它们的运动时间为x(s).(l)求x为何值时,PQ⊥AC;x为何值时,PQ⊥AB?(2)当O<x<2时,AD是否能平分△PQD的面积?若能,说出理由;(3)探索以PQ为直径的圆与AC的位置关系,请写出相应位置关系的x的取值范围(不要求写出过程).
甲、乙两人从少年宫出发,沿相同的路分别以不同的速度匀速跑向体育馆,甲先跑一段路程后,乙开始出发,当乙超出甲150米时,乙停在此地等候甲,两人相遇后乙又继续以原来的速度跑向体育馆.如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)的函数图象. (1)在跑步的全过程中,甲共跑了 米,甲的速度为 米/秒; (2)乙跑步的速度是多少?乙在途中等候甲用了多长时间? (3)甲出发多长时间第一次与乙相遇?此时乙跑了多少米?