如图,在□ ABCD中,BD为对角线,EF垂直平分BD分别交AD、BC的于点E、F,交BD于点O(1)试说明:BF=DE;(2)试说明:△ABE≌△CDF;(3)如果在□ ABCD中, AB=5,AD=10,有两动点P、Q分别从B、D两点同时出发,沿△BAE和△DFC各边运动一周,即点自B→A→E→B停止,点Q自D→F→C→D停止,点P运动的路程是m,点Q运动的路程是n,当四边形BPDQ是平行四边形时,求m与n满足的数量关系.(画出示意图)
解不等式组:
在一次数学游戏中,老师在三个盘子里分别放了一些糖果,糖果数依次为,,,记为(,,).游戏规则如下:若三个盘子中的糖果数不完全相同,则从糖果数最多的一个盘子中拿出两个,给另外两个盘子各放一个(若有两个盘子中的糖果数相同,且都多于第三个盘子中的糖果数,则从这两个盘子字母序在前的盘子中取糖果),记为一次操作.若三个盘子中的糖果数都相同,游戏结束.次操作后的糖果数记为(,,). (1)若(4,7,10),则第_______次操作后游戏结束; (2)小明发现:若(4,8,18),则游戏永远无法结束,那么________.
对于平面直角坐标系xOy中的点P(a,b),若点的坐标为(,)(其中k为常数,且),则称点为点P的“k属派生点”. 例如:P(1,4)的“2属派生点”为(1+,),即(3,6). (1)①点P的“2属派生点” 的坐标为____________; ②若点P的“k属派生点” 的坐标为(3,3),请写出一个符合条件的点P的坐标____________; (2)若点P在x轴的正半轴上,点P的“k属派生点”为点,且△为等腰直角三角形,则k的值为____________; (3)如图, 点Q的坐标为(0,),点A在函数的图象上,且点A是点B的“属派生点”,当线段B Q最短时,求B点坐标.
在△ABC中,AB=AC,将线段AC绕着点C逆时针旋转得到线段CD,旋转角为,且,连接AD、BD. (1)如图1,当∠BAC=100°,时,∠CBD 的大小为_________; (2)如图2,当∠BAC=100°,时,求∠CBD的大小; (3)已知∠BAC的大小为m(),若∠CBD 的大小与(2)中的结果相同,请直接写出的大小.
在平面直角坐标系中,二次函数()的图象与轴正半轴交于A点. (1)求证:该二次函数的图象与x轴必有两个交点; (2)设该二次函数的图象与x轴的两个交点中右侧的交点为点B,若∠ABO=45°,将直线AB向下平移2个单位得到直线l,求直线l的解析式; (3)在(2)的条件下,设M(p,q)为二次函数图象上的一个动点,当时,点M关于x轴的对称点都在直线l的下方,求m的取值范围.