在规格为6×6的正方形网格中,有一个L形图案(如图所示的阴影部分).⑴请你用三种不同的方法分别在下图中再将一个空白的小正方形涂成阴影,使整个阴影部分成为轴对称图形.⑵请你只用一种方法在下图中再将一个空白的小正方形涂成阴影,使整个阴影部分成为中心对称图形.
如图,在△ABC中,点D是BC边的中点,分别过点B、C作BE⊥AD于点E,CF⊥AD交AD的延长线于点F,求证:DE=DF.
因式分解(第(1)题4分,第(2)题5分).(1) .(2).
(9分)先化简,再求值:,其中.
(本题14分)如图,点A和动点P在直线上,点P关于点A的对称点为Q,以AQ为边作Rt△ABQ,使∠BAQ=90°,AQ:AB=3:4,作△ABQ的外接圆O。点C在点P右侧,PC=4,过点C作直线⊥,过点O作OD⊥于点D,交AB右侧的圆弧于点E。在射线CD上取点F,使DF=CD,以DE,DF为邻边作矩形DEGF,设AQ=(1)用关于的代数式表示BQ,DF;(2)当点P在点A右侧时,若矩形DEGF的面积等于90,求AP的长;(3)在点P的整个运动过程中,①当AP为何值时,矩形DEGF是正方形?②作直线BG交⊙O于另一点N,若BN的弦心距为1,求AP的长(直接写出答案)
(本题12分)如图,抛物线交轴正半轴于点A,顶点为M,对称轴NB交轴于点B,过点C(2,0)作射线CD交MB于点D(D在轴上方),OE∥CD交MB于点E,EF∥轴交CD于点F,作直线MF。(1)求点A,M的坐标;(2)当BD为何值时,点F恰好落在抛物线上?(3)当BD=1时,①、求直线MF的解析式,并判断点A是否落在该直线上;②、延长OE交FM于点G,取CF中点P,连结PG,△FPG,四边形DEGP,四边形OCDE的面积分别记为S1,S2,S3,则S1:S2:S3=