已知抛物线C:,为抛物线上一点,为关于轴对称的点,为坐标原点.(1)若,求点的坐标;(2)若过满足(1)中的点作直线交抛物线于两点, 且斜率分别为,且,求证:直线过定点,并求出该定点坐标.
命题p:“方程表示焦点在y轴上的椭圆”,命题q:“,恒成立”,若命题p与命题q有且只有一个是真命题,求实数的取值范围。
直线y=x-4与抛物线y2=4x交于A、B两点,F为抛物线的焦点,求△ABF的面积。
已知双曲线与椭圆共焦点,它们的离心率之和为,求双曲线的标准方程。
(本小题满分14分)已知椭圆C:+=1的左.右焦点为,离心率为,直线与x轴、y轴分别交于点,是直线与椭圆C的一个公共点,是点关于直线的对称点,设=(Ⅰ)证明:; (Ⅱ)确定的值,使得是等腰三角形.
(本小题满分14分)已知抛物线方程为,在y轴上截距为2的直线l与抛物线交于M、N两点,O为坐标原点,若OM⊥ON,求直线l的方程.