如图,正方形ABCD所在平面与圆O所在平面相交于CD,线段CD为圆O的弦,AE垂直于圆O所在平面,垂足E是圆O上异于C、D的点,AE=3,正方形ABCD的边长为.(1)求证:平面ABCD丄平面ADE;(2)求四面体BADE的体积;(3)试判断直线OB是否与平面CDE垂直,并请说明理由.
已知函数其中e是自然数的底数,.(1)当时,解不等式;(2)若上是单调增函数,求的取值范围;(3)当,求使方程上有解的所有整数k的值.
已知圆C:(x-1)2+(y-1)2=2经过椭圆Γ∶ (a>b>0)的右焦点F和上顶点B.(1)求椭圆Γ的方程;(2)如图,过原点O的射线与椭圆Γ在第一象限的交点为Q,与圆C的交点为P,M为OP的中点, 求的最大值.
在如图所示的几何体中,四边形是等腰梯形,∥,,.在梯形中,∥,且,⊥平面.(1)求证:; (2)若二面角为,求的长.
某市四所中学报名参加某高校今年自主招生的学生人数如下表所示:
为了了解参加考试的学生的学习状况,该高校采用分层抽样的方法从报名参加考试的四所中学的学生当中随机抽取50名参加问卷调查.(1)问四所中学各抽取多少名学生?(2)从参加问卷调查的名学生中随机抽取两名学生,求这两名学生来自同一所中学的概率;(3)在参加问卷调查的名学生中,从来自两所中学的学生当中随机抽取两名学生,用表示抽得中学的学生人数,求的分布列.
在数列中,已知.(1)求证: 是等比数列;(2)令为数列的前项和,求的表达式.