如图,椭圆C:+=1(a>b>0)的焦点F1,F2和短轴的一个端点A构成等边三角形,点(,)在椭圆C上,直线l为椭圆C的左准线.(1) 求椭圆C的方程;(2) 点P是椭圆C上的动点,PQ ⊥l,垂足为Q.是否存在点P,使得△F1PQ为等腰三角形?若存在,求出点P的坐标;若不存在,说明理由.
圆C的圆心在y轴上,且与两直线m1:;m2:均相切.(I)求圆C的方程;(II)过抛物线上一点M,作圆C的一条切线ME,切点为E,且的最小值为4,求此抛物线准线的方程.
已知函数(常数)在处取得极大值M=0.(Ⅰ)求的值;(Ⅱ)当,方程有解,求的取值范围.
如图:在多面体EF-ABCD中,四边形ABCD是平行四边形,△EAD为正三角形,且平面EAD平面ABCD,EF∥AB, AB=2EF=2AD=4,.(Ⅰ)求证:BFAD;(Ⅱ)求直线BD与平面BCF所成角的大小.
观察下列三角形数表记第行的第m个数为 .(Ⅰ)分别写出,,值的大小;(Ⅱ)归纳出的关系式,并求出关于n的函数表达式.
在中,分别是角A、B、C的对边,且满足: .(I)求C;(II)当时,求函数的值域.