如图,椭圆C:+=1(a>b>0)的焦点F1,F2和短轴的一个端点A构成等边三角形,点(,)在椭圆C上,直线l为椭圆C的左准线.(1) 求椭圆C的方程;(2) 点P是椭圆C上的动点,PQ ⊥l,垂足为Q.是否存在点P,使得△F1PQ为等腰三角形?若存在,求出点P的坐标;若不存在,说明理由.
过点P(3,6)的直线截得的弦AB的长为8,求直线
设直线交于点. (1)求点的坐标; (2)当直线且与直线垂直时,求直线的方程.
已知函数. (1)求函数的单调区间; (2)当时, (I)已知函数的图象与函数的图象关于直线对称.证明当时,; (II)如果,且,证明.
如图,已知椭圆C:的左、右焦点为,其上顶点为.已知是边长为的正三角形. (1)求椭圆C的方程; (2) 过点任作一直线交椭圆C于两点,记若在线段上取一点使得,试判断当直线运动时,点是否在某一定直线上运动?若在,请求出该定直线的方程,若不在,请说明理由.
如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点. (1)求证:AC⊥SD; (2)若SD⊥平面PAC,求二面角P-AC-D的大小 (3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE:EC的值;若不存在,试说明理由.