设数列的前项和为,,且.(Ⅰ)求数列的通项公式;(Ⅱ)等差数列的各项均为正数,其前项和为,且又成等比数列,求;(III)求数列的前项和.
已知等差数列满足:. (Ⅰ)求的通项公式; (Ⅱ)若,求数列的前n项和.
选修4-5:不等式选讲 已知函数. (Ⅰ)当a=3时,求函数的最大值; (Ⅱ)解关于x的不等式.
选修4-4:坐标系与参数方程 在直角坐标系xOy中,直线的参数方程为.在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为. (Ⅰ)求圆C在直角坐标系中的方程; (Ⅱ)若圆C与直线相切,求实数a的值.
选修4—1:几何证明选讲如图,锐角△ABC的内心为I,过点A作直线BI的垂线,垂足为H,点E为内切圆I与边CA的切点. (Ⅰ)求证:四点A,I,H,E共圆; (Ⅱ)若∠C=,求∠IEH的度数.
设函数. (Ⅰ)当时,求函数的单调区间; (Ⅱ)设函数对任意都有成立,求的取值范围.