如图甲,在直角坐标系中,点A,B的坐标分别为(0,2)、(2,2).(1)求△AOB的面积;(2)如图乙,点D为AB延长线上一点,点C为x轴正半轴上一点,分别作∠DBO与∠BOC的平分线交于点M,点N为AB上一点,求∠BNM+∠BMN+∠MOC的度数.
小明坐于堤边垂钓,如图,河堤AC的坡角为30°,AC长米,钓竿AO的倾斜角是60°,其长为3米,若AO与钓鱼线OB的夹角为60°,求浮漂B与河堤下端C之间的距离.
如图(1),把一张顶角为36°的等腰三角形纸片剪两刀,分成三张小纸片,使每张小纸片都是等腰三角形.定义:如过两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.尺规作图(保留痕迹,不写作法):请在图(2)中用两种不同的方法画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数(若两种方法分得的三角形成3对全等三角形,则视为同一种)
如图,均匀的正四面体的各面依次标有1,2,3,4四个数字.小明做了60次投掷试验,结果统计如下:(1)计算上述试验中“4朝下”的频率是__________;(2)“根据试验结果,投掷一次正四面体,出现2朝下的概率是.”的说法正确吗?为什么? (3)随机投掷正四面体两次,请用列表或画树状图法,求两次朝下的数字之和大于4的概率.
如图,抛物线y=x2+bx+c与y轴交于点C(0,-4),与x轴交于点A,B,且B点的坐标为(2,0)(1)求该抛物线的解析式.(2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值.(3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标.
已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.(1)求证:DE是⊙O的切线;(2)若DE=6cm,AE=3cm,求⊙O的半径.