如图,抛物线y=x2+bx+c与y轴交于点C(0,-4),与x轴交于点A,B,且B点的坐标为(2,0)(1)求该抛物线的解析式.(2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值.(3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标.
已知,求的值.
如图,在△ABC和△ADE中,AB=AC,AD=AE,, 求证:△ABD≌△ACE.
解不等式组,并写出它的整数解.
中,,,cm.长为1cm的线段在的边上沿方向以1cm/s的速度向点运动(运动前点与点重合).过分别作的垂线交直角边于两点,线段运动的时间为s. (1)若的面积为,写出与的函数关系式(写出自变量的取值范围); (2)线段运动过程中,四边形有可能成为矩形吗?若有可能,求出此时的值;若不可能,说明理由; (3)为何值时,以为顶点的三角形与相似?
一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份售价不超过10元,每天可销售400份;若每份售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数,用y(元)表示该店日净收入.(日净收入=每天的销售额-套餐成本-每天固定支出) (1)求y与x的函数关系式; (2)若每份套餐售价不超过10元,要使该店日净收入不少于800元,那么每份售价最少不低于多少元? (3)该店既要吸引顾客,使每天销售量较大,又要有较高的日净收入.按此要求,每份套餐的售价应定为多少元?此时日净收入为多少?