如图,某校7年级的学生从学校O点出发,要到某地P处进行探险活动,他们先向正西方向走8km到A处,又往正南方向走4km到B处,又折向正东方向走6km到C处,再折向正北方向走8km到D处,最后又往正东方向走4km才到探险地P;取点O为原点,取点O的正东方向为x轴的正方向,取点O的正北方向为y轴的正方向,以2km为一个单位长度建立平面直角坐标系.(1)在平面直角坐标系中画出探险路线图;(2)分别写出A、B、C、D、P点的坐标.
某商场将进货价为30元的台灯以40元的销售价售出,平均每月能售出600个.市场调研表明:当销售价每上涨1元时,其销售量就将减少10个.若设每个台灯的销售价上涨a元. (1)试用含a的代数式填空: ①涨价后,每个台灯的销售价为 元; ②涨价后,每个台灯的利润为 元; ③涨价后,商场的台灯平均每月的销售量为 台. (2)如果商场要想销售利润平均每月达到10000元,商场经理甲说“在原售价每台40元的基础上再上涨40元,可以完成任务”,商场经理乙说“不用涨那么多,在原售价每台40元的基础上再上涨10元就可以了”,试判断经理甲与乙的说法是否正确,并说明理由.
一只蚂蚁从某点M出发,在一条直线上来回爬行,把它向右爬行的路程记为正数,向左爬行的路程记为负数,则它爬过的各段路程依次为:﹣3cm,+10cm,﹣8cm,+5cm,﹣6cm,+12cm,﹣12cm.(1)问这只蚂蚁最后停止位置在出发点M的左侧,还是右侧,距离多远?(2)蚂蚁在爬行过程中,如果每爬行2cm获得1粒芝麻,那么最后它共得到多少粒芝麻?
2015秋•成都校级月考)用⊗定义一种新运算:a⊕b=(a+b)﹣(a﹣b),比如:5⊕4=(5+4)﹣(5﹣4)=8 (1)求:2⊕(﹣3); (2)求:(3⊕4)⊕5.
若|a|=8,|b|=5,且a+b>0,求:a﹣b的值.
如图所示是一个由若干个相同的小立方块所搭成的几何体从上面看到的图形,小正方形中的数字表示在该位置上小立方块的个数,请画出它从正面和从左面看到的平面图形.