如图,一艘轮船以每小时20海里的速度沿正北方向航行,在A处测得灯塔C在北偏西30°方向,轮船航行2小时后到达B处,在B处测得灯塔C在北偏西60°方向.当轮船到达灯塔C的正东方向的D处时,求此时轮船与灯塔C的距离.(结果保留根号)
传统的端午节即将来临,某企业接到一批粽子生产任务,约定这批粽子的出厂价为每只4元,按要求在20天内完成.为了按时完成任务,该企业招收了新工人,设新工人李明第 x 天生产的粽子数量为 y 只, y 与 x 满足如下关系:
y = 34 x ( 0 ⩽ x ⩽ 6 ) 20 x + 80 ( 6 < x ⩽ 20 )
(1)李明第几天生产的粽子数量为280只?
(2)如图,设第 x 天生产的每只粽子的成本是 p 元, p 与 x 之间的关系可用图中的函数图象来刻画.若李明第 x 天创造的利润为 w 元,求 w 与 x 之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润 = 出厂价 − 成本)
为了推进球类运动的发展,某校组织校内球类运动会,分篮球、足球、排球、羽毛球、乒乓球五项,要求每位学生必须参加一项并且只能参加一项,某班有一名学生根据自己了解的班内情况绘制了如图所示的不完整统计表和扇形统计图.
某班参加球类活动人数统计表
项目
篮球
足球
排球
羽毛球
乒乓球
人数
m
6
8
4
请根据图表中提供的信息,解答下列问题:
(1)图表中 m = , n = ;
(2)若该校学生共有1000人,则该校参加羽毛球活动的人数约为 人;
(3)该班参加乒乓球活动的4位同学中,有3位男同学(分别用 A , B , C 表示)和1位女同学(用 D 表示),现准备从中选出两名同学参加双打比赛,用树状图或列表法求出恰好选出一男一女的概率.
知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用 C 表示)开展社会实践活动,车到达 A 地后,发现 C 地恰好在 A 地的正北方向,且距离 A 地13千米,导航显示车辆应沿北偏东 60 ° 方向行驶至 B 地,再沿北偏西 37 ° 方向行驶一段距离才能到达 C 地,求 B 、 C 两地的距离.(参考数据: sin 53 ° ≈ 4 5 , cos 53 ° ≈ 3 5 , tan 53 ° ≈ 4 3 )
在边长为 1 个单位长度的正方形网格中建立如图所示的平面直角坐标系, ΔABC 的顶点都在格点上, 请解答下列问题:
(1) 作出 ΔABC 向左平移 4 个单位长度后得到的△ A 1 B 1 C 1 ,并写出点 C 1 的坐标;
(2) 作出 ΔABC 关于原点 O 对称的△ A 2 B 2 C 2 ,并写出点 C 2 的坐标;
(3) 已知 ΔABC 关于直线 l 对称的△ A 3 B 3 C 3 的顶点 A 3 的坐标为 ( − 4 , − 2 ) ,请直接写出直线 l 的函数解析式 .
如图,已知二次函数 y = a x 2 − ( 2 a − 3 4 ) x + 3 的图象经过点 A ( 4 , 0 ) ,与 y 轴交于点 B .在 x 轴上有一动点 C ( m , 0 ) ( 0 < m < 4 ) ,过点 C 作 x 轴的垂线交直线 AB 于点 E ,交该二次函数图象于点 D .
(1)求 a 的值和直线 AB 的解析式;
(2)过点 D 作 DF ⊥ AB 于点 F ,设 ΔACE , ΔDEF 的面积分别为 S 1 , S 2 ,若 S 1 = 4 S 2 ,求 m 的值;
(3)点 H 是该二次函数图象上位于第一象限的动点,点 G 是线段 AB 上的动点,当四边形 DEGH 是平行四边形,且 ▱ DEGH 周长取最大值时,求点 G 的坐标.