某工厂生产A产品x吨所需费用为P元,而卖出x吨这种产品的售价为每吨Q元, 已知P=x2+5x+1000,Q=-+45. (1)该厂生产并售出x吨,写出这种产品所获利润W(元)关于x(吨)的函数关系式; (2)当生产多少吨这种产品,并全部售出时,获利最多?这时获利多少元? 这时每吨的价格又是多少元?
计算:(1); (2)化简:.
如图,在平面直角坐标系中完成下列各题:(不写作法,保留作图痕迹) (1)在图1中作出关于y轴对称的,并写出、、的坐标; (2)在图2中x轴上画出点,使的值最小.
分解因式:(1);(2).
如图(1)是一个长为,宽为(>)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是.
如图,抛物线y=交x轴于点A、B,交y轴于点C,点A的坐标是(-1,0),点C的坐标是(0,2). (1)求该抛物线的解析式。 (2)已知点P是抛物线上的一个动点,点N在x轴上。 ①若点P在x轴上方,且△APN是等腰直角三角形,求点N的坐标; ②若点P在x轴下方,且△APN∽△BOC,请直接写出点N的坐标。