如图所示,一位篮球运动员在离篮圈水平距离为4m处跳起投篮,球沿一条抛物线运行,当球运行的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮框内.已知篮圈中心离地面距离为3.05m. (1)建立如图所示的直角坐标系,求抛物线所对应的函数关系式; (2)若该运动员身高1.8m,这次跳投时,球在他头顶上方0.25m处出手.问:球出手时,他跳离地面多高?
如图,在平面直角坐标系中,已知二次函数的图像与轴交于点,与轴交于A、B两点,点B的坐标为 求二次函数的解析式及顶点D的坐标; 点M是第二象限内抛物线上的一动点,若直线OM把四边形ACDB分成面积为1:2的两部分,求出此时点的坐标;点P是第二象限内抛物线上的一动点,问:点P在何处时△的面积最大?最大面积是多少?并求出 此时点P的坐标.
已知:等边中,点O是边AC,BC的垂直平分线的交点,M,N分别在直线AC, BC上,且. 如图1,当CM=CN时, M、N分别在边AC、BC上时,请写出AM、CN 、MN三者之间的数量关系;如图2,当CM≠CN时,M、N分别在边AC、BC上时,(1)中的结论是否仍然成立?若成立,请你加以证明;若不成立,请说明理由;如图3,当点M在边AC上,点N在BC 的延长线上时,请直接写出线段AM、CN 、MN三者之间的数量关系.
已知关于的方程.若方程有两个不相等的实数根,求的取值范围; 若正整数满足,设二次函数的图象与轴交于两点,将此图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线与此图象恰好有三个公共点时,求出的值(只需要求出两个满足题意的k值即可).
阅读并回答问题: 小亮是一位刻苦学习、勤于思考、勇于创新的同学.一天他在解方程时,突发 奇想:在实数范围内无解,如果存在一个数i,使,那么当时,有i,从而i是方程的两个根. 据此可知: i可以运算,例如:i3=i2·i=-1×i=-i,则i4=, i2011=______________,i2012=__________________;方程的两根为(根用i表示).
如图,在矩形ABCD中,点O在对角线AC上,以OA长为半径的与AD,AC分别交于点E,F,∠ACB="∠DCE" .请判断直线CE与的位置关系,并证明你的结论;若 DE:EC=1:,,求⊙O的半径.