已知是定义在上的奇函数,当时,。(1)求函数的解析式;(2)画出函数的图象,并求函数的单调区间;(3)当为何值时,方程有三个解?
.(本小题满分14分) 某校从参加高一年级期末考试的学生中抽出60名学生,将其成绩(均为整数)分成六段,…后画出如下部分频率分布直方图.观察图形的信息,回答下列问题: (1)求第四小组的频率,并补全这个频率分布直方图; (2)估计这次考试的及格率(60分及以上为及格)和平均分; (3)用分层抽样的方法从成绩是80分以上(包括80分)的学生中抽取了6人进行试卷分析,再从这6个人中选2人作学习经验介绍发言,求选出的2人中至少有1人在的概率.
(本小题满分12分) 在中,角所对的边分别为且满足 (I)求角的大小; (II)求的最大值,并求取得最大值时角的大小.
. (满分12分) 矩形ABCD的对角线AC、BD相交于点M (2,0),AB边所在直线的方程为:. 若点在直线AD上. (1)求点A的坐标及矩形ABCD外接圆的方程; (2)过直线上一点P作(1)中所求圆的切线,设切点为E、F,求四边形PEMF面积的最小值,并求此时的值.
(满分12分) 已知函数是定义在R上的奇函数. (1)求的值; (2)判断在R上的单调性并用定义证明; (3)若对恒成立,求实数k的取值范围.
(满分12分)已知圆C的方程为: (1)若圆C的切线l在x轴和y轴上的截距相等,求切线l的方程; (2)过原点的直线m与圆C相交于A、B两点,若|AB|=2,求直线m的方程.