若,写出命题“”有两个相异实根的逆命题、否命题、逆否命题,并判断它们的真假.
(本题满分14分,第(1)、(2)小题各3分;第(3)、(4)小题各4分)请你指出函数的基本性质(不必证明),并判断以下四个命题的正确性,必要时可直接运用有关其基本性质的结论加以证明.(1)当时,等式恒成立;(2)若,则一定有;(3)若,方程有两个不相等的实数解;(4)函数在上有三个零点.
(本题满分12分,第(1)小题5分,第(2)小题7分)如图,是圆柱体的一条母线,已知过底面圆的圆心,是圆上不与点重合的任意一点,,,.(1)求直线与直线所成角的大小;(2)将四面体绕母线旋转一周,求的三边在旋转过程中所围成的几何体的体积.
(本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)我们把一系列向量按次序排成一列,称之为向量列,记作,已知向量列满足:,.(1)证明:数列是等比数列;(2)设,问数列中是否存在最小项?若存在,求出最小项;若不存在,请说明理由;(3)设表示向量与间的夹角,若,对于任意正整数,不等式恒成立,求实数的范围.
(本题满分18分,第(1)小题4分,第(2)小题5分,第(3)小题9分)设函数的定义域为,值域为,如果存在函数,使得函数的值域仍是,那么称是函数的一个等值域变换.(1)判断下列函数是不是函数的一个等值域变换?说明你的理由;,;,.(2)设函数的定义域为,值域为,函数的定义域为,值域为,那么“”是否为“是的一个等值域变换”的一个必要条件?请说明理由;(3)设的定义域为,已知是的一个等值域变换,且函数的定义域为,求实数的值.
(本题满分14分,第(1)小题5分,第(2)小题9分)已知圆,点,点在圆上运动,的垂直平分线交于点.(1)求动点的轨迹方程;(2)过点且斜率为的动直线交曲线于两点,在轴上是否存在定点,使以为直径的圆恒过这个点?若存在,请求出点的坐标;若不存在,请说明理由.